top of page

Using first-principles density functional theory calculations, we explore the chemical activity of epitaxial heterostructures of TiO2 anatase on strained polar SrTiO3 films focusing on the oxygen evolution reaction (OER), the bottleneck of water splitting. Our results show that the reactivity of the TiO2 surface is tuned by electric dipoles dynamically induced by the adsorbed species during the intermediate steps of the reaction while the initial and final steps remain unaffected. Compared to the OER on unsupported TiO2, the
combined effects of the dynamically induced dipoles and epitaxial strain strongly reduce rate-limiting thermodynamic barriers and significantly improve the efficiency of the reaction.

Dynamic Control with high-alpha support

Quantum Materials for Energy Conversion Lab
School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology

반도체 ALD 박막 증착, DRAM 및 NAND 소자 제작,

DFT 시뮬레이션 관심 있는 대학원생 모집합니다

Contact : junhee@unist.ac.kr

Catalyst

Battery

Semiconductor

Hydrogen production

bottom of page